Scheduling

Module 12
July 23, 2014

Outline

■ Scheduling

\checkmark What is it?
\checkmark Objectives
Sequencing rules

- Single resource

■ Two resources
\checkmark Employee scheduling

Scheduling

\checkmark Deals with the timing of operations
\checkmark Specifies when resources are needed to produce a product or provide a service
\checkmark Helps us decide what order to perform jobs
\checkmark All organizations perform scheduling to some extent...

In service organizations, managers schedule...

Operating room use

Classroom use

Instructor schedules

In manufacturing organizations, managers schedule...

Workers

Purchases of materials
Easier to schedule here
Production of goods

Harder to schedule here

Sequencing Rules

\checkmark Determine the order jobs are processed by a resource
\checkmark Which job should a machine do first, next, etc.?
\checkmark Which surgeries should go to the operating room first?
\checkmark What order should you work on your course projects in?
\checkmark Many sequencing rules exist
\checkmark Each attempts to achieve to an objective

Objectives in Scheduling

\checkmark Meet customer due dates
\checkmark Minimize job lateness
\checkmark Minimize response time
\checkmark Minimize completion time
\checkmark Minimize time in the system
\checkmark Minimize overtime
\checkmark Maximize machine or labor utilization
\checkmark Minimize idle time
\checkmark Minimize work-in-process inventory

Types of Sequencing Rules

Sequencing jobs at a single resource

■ Sequencing jobs across multiple resources

Sequencing Rules (Single Resource)

■ Local - consider only current work center operation
\checkmark First Come First Served
\checkmark Last Come First Served
\checkmark Shortest Processing Time
\checkmark Longest Processing Time
\checkmark Earliest Due Date

- consider current and all subsequent work center operations needed to complete job
\checkmark Slack Per Remaining Operation
\checkmark Critical Ratio

Sequencing Rules (Single Resource)

Local
\checkmark First Come First Served
\checkmark Last Come First Served
\checkmark Shortest Processing Time
\checkmark Longest Processing Time Earliest Due Date

■ Global
\checkmark Slack Per Remaining Operation
\checkmark Critical Ratio

Sequencing Example

This semester you took 5 classes
Each has a major project due at some point in the semester

Projects are assigned during the first week of the semester

Sequencing Example

This semester you took 5 classes
Each has a major project due at some point in the semester

Projects are assigned during the first week of the semester

First Come First Served (FCFS)

Jobs are processed in order of arrival Which comes first?

First Come First Served (FCFS)

Management																							
Marketing																							
Finance																							
Accounting																							
English																							

Processing time: $9 \quad 3 \quad 8 \quad 2 \quad 6$
Time until due: 23
15
18
6
8

First Come First Served (FCFS)

Management																							
Marketing																							
Finance																							
Accounting																							
English																							

Processing time: 9 3 8 2 6
Time until due: 23 15 18 6 8

First Come First Served (FCFS)

Management																						
Marketing																						
Finance																						
Accounting																						
English																						

[^0]

First Come First Served (FCFS)

Management																								
Marketing																								
Finance																								
Accounting																								
English																								

First Come First Served (FCFS)

Superimposing due dates...

Management																					
Marketing																					
Finance																					
Accounting																					
English																					

First Come First Served (FCFS)

Superimposing due dates...

Management																					
Marketing																					
Finance																					
Accounting																					
English																					

So 3 projects are late!!
 How many weeks late?

First Come First Served (FCFS)

Superimposing due dates...

Management																					
Marketing																					
Finance																					
Accounting																					
English																					

So 3 projects are late!!
 How many weeks late?

Processing time: 9 3 $8 \quad 2 \quad 6$
Time until due: 23
15
18
6
8

First Come First Served (FCFS)

Management																				
Marketing																				
Finance																				
Accounting																				
English																				

Avg. job lateness $=\frac{\text { Total days late }}{\text { Number of jobs }}=\frac{11}{5}=2.2$ days

First Come First Served (FCFS)

Makespan: total time to process all jobs = $\mathbf{2 8}$ days

Flow time: Sum of times each job spends waiting, and being processed

First Come First Served (FCFS)

Makespan = 28 days

Management																			
Marketing																			
Finance																			
Accounting																			
English																			

Flow time $=6+8+16+19+28=77$

Processing time: $9 \quad 3 \quad 8 \quad 2 \quad 6$
Time until due: 23
15
18
6
8

First Come First Served (FCFS)

Makespan $=28$ days

Management																								
Marketing																								
Finance																								
Accounting																								
English																								

Flow time = 77
Average flow time = Sum of flow times $/$ \# jobs

First Come First Served (FCFS)

Makespan $=28$ days

Flow time = 77
Average flow time = 77 days $/ 5$ jobs $=15.4$ days/job

First Come First Served (FCFS)

Makespan $=28$ days

Flow time = 77
Average flow time $=15.4$ days/job
Avg \# jobs in system = Sum of flow times / total processing time

First Come First Served (FCFS)

Makespan = 28 days

Flow time = 77
Average flow time $=15.4$ days/job
Avg \# jobs in system = 77 days/28 days $=2.75$
Utilization = Total processing time $/$ sum of flow time

$$
\text { Processing time: } 9 \quad 3 \quad 8 \quad 2 \quad 6
$$

Time until due: 23
15
18
6

First Come First Served (FCFS)

Makespan = 28 days

Management																				
Marketing																				
Finance																				
Accounting																				
English																				

Flow time = 77
Average flow time $=15.4$ days/job
Avg \# jobs in system = 77 days/28 days $=2.75$
Utilization $=28$ days $/ 77$ days $=36.4 \%$
Processing time: $9 \quad 3 \quad 8 \quad 2 \quad 6$
Time until due: 23
15
18
6
8

Sequencing Rules (Single Resource)

Local
\checkmark First Come First Served
\checkmark Last Come First Served
\checkmark Shortest Processing Time
\checkmark Longest Processing Time Earliest Due Date

■ Global
\checkmark Slack Per Remaining Operation
\checkmark Critical Ratio

Last Come First Served (LCFS)

As jobs pile up the operator picks the one on the top of the stack to work on

Processing time: 9
3
8
2
6
Time until due: 23
15
18
6
8

Last Come First Served (LCFS)

Management																							
Marketing																							
Finance																							
Accounting																							
English																							

Last Come First Served (LCFS)

Management																							
Marketing																							
Finance																							
Accounting																							
English																							

Processing time: 9
3
8
2
6
Time until due: 23
15
18
6
8

Last Come First Served (LCFS)

Avg job lateness = Total days late $/$ \# jobs

Avg flowtime = Sum of flowtimes $/$ \# jobs
Avg \# jobs = Sum of flowtimes $/$ Total processing time Utilization $=$ Total processing time $/$ Sum of flowtimes

Management																								
Marketing																								
Finance																								
Accounting																								
English																								

Last Come First Served (LCFS)

Avg job lateness = Total days late $/$ \# jobs

Avg flowtime = Sum of flowtimes $/$ \# jobs
Avg \# jobs = Sum of flowtimes $/$ Total processing time Utilization $=$ Total processing time $/$ Sum of flowtimes

Management																								
Marketing																								
Finance																								
Accounting																								
English																								

Last Come First Served (LCFS)

Avg job lateness = Total days late $/$ \# jobs

Management																					
Marketing																					
Finance																					
Accounting																					
English																					

Processing time: 9

3
8
2
6
Time until due: 23
15
18
6
8

Last Come First Served (LCFS)

Avg job lateness = Total days late $/$ \# jobs
Avg flowtime = Sum of flowtimes $/$ \# jobs
Avg \# jobs = Sum of flowtimes / Total processing time Utilization $=$ Total processing time $/$ Sum of flowtimes

Superimposin
g

Management																							
Marketing																							
Finance																							
Accounting																							
English																							

So 3 projects are late!!

Processing time: 9 3 8 2 6
Time until due: 23 15 18 6 8

Last Come First Served (LCFS)

Superimposing due dates...

Management																							
Marketing																							
Finance																							
Accounting																							
English																							

$\frac{\text { Total days late }}{\text { Number of jobs }}=\frac{38}{5}=7.6$ days
$\begin{array}{rlllll}\text { Processing time: } & 9 & 3 & 8 & 2 & 6 \\ \text { Time until due: } & 23 & 15 & 18 & 6 & 8\end{array}$

Last Come First Served (LCFS)

Superimposing

Makespan = 28 days

Management																			
Marketing																			
Finance																			

Flow time = $9+12+20+22+28=91$
Average flow time = 91 days $/ 5$ jobs $=18.2$ days/job
Avg \# jobs in system = 91 days/28 days $=3.25$
Utilization = 28 days $/ 91$ days $=30.8 \%$
Processing time: $\begin{array}{llllll}9 & 3 & 8 & 2 & 6\end{array}$
Time until due: $23 \quad 15 \quad 18 \quad 6 \quad 8$

Sequencing Rules (Single Resource)

Local
\checkmark First Come First Served
\checkmark Last Come First Served
\checkmark Shortest Processing Time
\checkmark Longest Processing Time Earliest Due Date

■ Global
\checkmark Slack Per Remaining Operation
\checkmark Critical Ratio

Shortest Processing Time (SPT)

Process the job with the shortest processing time first

Shortest Processing Time (SPT)

Management																						
Marketing																						
Finance																						
Accounting																						
English																						

Shortest Processing Time (SPT)

Management																					
Marketing																					
Finance																					
Accounting																					
English																					

Shortest Processing Time (SPT)

Management																						
Marketing																						
Finance																						
Accounting																						
English																						

Shortest Processing Time (SPT)

Management																					
Marketing																					
Finance																					
Accounting																					
English																					

Shortest Processing Time (SPT)

Superimposing due dates...

Management																				
Marketing																				
Finance																				
Accounting																				
English																				

Shortest Processing Time (SPT)

Superimposing due dates...

Management																				
Marketing																				
Finance																				
Accounting																				
English																				

Avg. job lateness =
 $\frac{\text { Total days late }}{\text { Number of jobs }}=\frac{9}{5}=1.8$ days

Processing time:	9	3	8	2	6
Time until due:	23	15	18	6	8

Shortest Processing Time (SPT)

Makespan = 28 days

Flow
time $=2+5+11+19+28=65$
Average flow time = 65 days $/ 5$ jobs = 13 days/job
Avg \# jobs in system = 65 days/28 days = 2.32
Utilization = 28 days/65 days $=43.1 \%$
Processing time: $9 \quad 3 \quad 8 \quad 2 \quad 6$
Time until due: $23 \quad 15 \quad 18 \quad 6 \quad 8$

Sequencing Rules (Single Resource)

Local
\checkmark First Come First Served
\checkmark Last Come First Served
\checkmark Shortest Processing Time
\checkmark Longest Processing Time
Earliest Due Date

■ Global
\checkmark Slack Per Remaining Operation
\checkmark Critical Ratio

Process the job with the longest processing time first

Longest Processing Time (LPT)

Longest Processing Time (LPT)

Superimposing due dates...

Management																				

Longest Processing Time (LPT)

Superimposing due dates...

Management																				

Processing time: 9 3 8 2 6
Time until due: 23 15 18

6

8

Longest Processing Time (LPT)

Avg. job lateness =

 $\frac{\text { Total days late }}{\text { Number of jobs }}=\frac{48}{5}=9.6$ days

 $\frac{\text { Total days late }}{\text { Number of jobs }}=\frac{48}{5}=9.6$ days}
Processing time: 9 3

8

2 6
Time until due: $23 \quad 15 \quad 18 \quad 6 \quad 8$

Longest Processing Time (LPT)

Makespan = 28 days

Sequencing Rules (Single Resource)

Local
\checkmark First Come First Served
\checkmark Last Come First Served
\checkmark Shortest Processing Time
\checkmark Longest Processing Time Earliest Due Date

■ Global
\checkmark Slack Per Remaining Operation
\checkmark Critical Ratio

Earliest Due Date (EDD)

Process the job with the earliest due date first

Earliest Due Date (EDD)

Management																						
Marketing																						
Finance																						
Accounting																						
English																						

Earliest Due Date (EDD)

Management																						
Marketing																						
Finance																						
Accounting																						
English																						

Earliest Due Date (EDD)

Management																						
Marketing																						
Finance																						
Accounting																						
English																						

Earliest Due Date (EDD)

Management																						
Marketing																						
Finance																						
Accounting																						
English																						

Earliest Due Date (EDD)

Superimposing due dates...

Management																		
Marketing																		
Finance																		
Accounting																		
English																		

Earliest Due Date (EDD)

Superimposing due dates...

Management																		
Marketing																		
Finance																		
Accounting																		
English																		

Processing time: 9 3 8
2 6
Time until due: 23 15 18

6
8

Earliest Due Date (EDD)

Superimposing due dates...

Management																		
Marketing																		
Finance																		
Accounting																		
English																		

Avg. job lateness = $\frac{\text { Total days late }}{\text { Number of jobs }}=\frac{6}{5}=1.2$ days

Processing time: 9 3

8

2 6
Time until due: $23 \quad 15 \quad 18 \quad 6 \quad 8$

Earliest Due Date (EDD)

Superimposing due dates...

Makespan = 28 days

Management																				
Marketing																				
Finance																				
Accounting																				
English																				

$$
\begin{aligned}
& \text { time }=2+8+11+19+28 c=68 \\
& \text { Average flow time }=68 \text { days } / 5 \text { jobs }=13.6 \text { days } / \mathrm{job}
\end{aligned}
$$ Avg \# jobs in system = 68 days $/ 28$ days $=2.43$ Utilization $=28$ days $/ 68$ days $=41.2 \%$

Processing time: $\begin{array}{cccccc}9 & 3 & 8 & 2 & 6\end{array}$
Time until due: $23 \quad 15 \quad 18 \quad 6 \quad 8$

Summary

	Avg lateness	Avg flowtime	Avg \#jobs	utilization
FCFS	2.2	15.4	2.75	36.4%
LCFS	7.6	18.2	3.25	30.8%
SPT	1.8	13	2.32	43.1%
LPT	9.6	20.6	3.68	27.2%
EDD	1.2	13.6	2.43	41.2%

Sequencing Rules (Single Resource)

- Local
\checkmark First Come First Served
\checkmark Last Come First Served
\checkmark Shortest Processing Time
\checkmark Longest Processing Time
\checkmark Earliest Due Date

Global
\checkmark Slack Per Remaining Operation
\checkmark Critical Ratio

Global Rules

- Consider more than current operation

■ Look at work at other work centers that needs to be completed before the job is done

Types of Sequencing Rules

- Sequencing jobs at a single resource

Sequencing jobs across multiple resources

Scheduling Across Multiple Resources

■ Previous rules considered scheduling (sequencing) jobs at one resource

- How can we schedule jobs across multiple resources??

Two resource problems

Suppose you work with a classmate, Kim on all projects
In each project you do the research, then Kim writes the report
You want to complete all projects asap

Processing time (you): $2 \quad 6 \quad 3 \quad 5 \quad 1$

Processing time (Kim): $\begin{array}{llllll}4 & 3 & 5 & 4 & 2\end{array}$

What should be the order for the projects?

Two resource problems

Johnson's Rule Sequences tasks to minimize makespan

1. Find the smallest processing time

- If its on the 1st machine, assign the task at the beginning of the sequence and eliminate it from further consideration
- If its on the $2 n d$ machine, assign the task at the end of the sequence and eliminate it from further consideration

2. Repeat step 1 for all unassigned tasks

Processing time (you): $2 \quad 6 \quad 3 \quad 5 \quad 1$

Processing time (Kim): $\begin{array}{llllll}4 & 3 & 5 & 4 & 2\end{array}$

What order should you do the projects in?

Two resource problems

Johnson's Rule Sequences tasks to minimize makespan

1. Find the smallest processing time

- If its on the 1st machine, assign the task at the beginning of the sequence and eliminate it from further consideration
- If its on the $2 n d$ machine, assign the task at the end of the sequence and eliminate it from further consideration

2. Repeat step 1 for all unassigned tasks

Sequence

English

Processing time (Kim): $\begin{array}{llllll}4 & 3 & 5 & 4 & 2\end{array}$

Two resource problems

Johnson's Rule Sequences tasks to minimize makespan

1. Find the smallest processing time

- If its on the 1st machine, assign the task at the beginning of the sequence and eliminate it from further consideration
- If its on the $2 n d$ machine, assign the task at the end of the sequence and eliminate it from further consideration

2. Repeat step 1 for all unassigned tasks

Sequence

English
Management

Two resource problems

Johnson's Rule Sequences tasks to minimize makespan

1. Find the smallest processing time

- If its on the 1st machine, assign the task at the beginning of the sequence and eliminate it from further consideration
- If its on the $2 n d$ machine, assign the task at the end of the sequence and eliminate it from further consideration

2. Repeat step 1 for all unassigned tasks

Two resource problems

Johnson's Rule Sequences tasks to minimize makespan

1. Find the smallest processing time

- If its on the 1st machine, assign the task at the beginning of the sequence and eliminate it from further consideration
- If its on the $2 n d$ machine, assign the task at the end of the sequence and eliminate it from further consideration

2. Repeat step 1 for all unassigned tasks

Sequence
English
Management Finance

Marketing

Two resource problems

Johnson's Rule Sequences tasks to minimize makespan

1. Find the smallest processing time

- If its on the 1st machine, assign the task at the beginning of the sequence and eliminate it from further consideration
- If its on the $2 n d$ machine, assign the task at the end of the sequence and eliminate it from further consideration

2. Repeat step 1 for all unassigned tasks

Sequence
English
Management Finance

Accounting
Marketing

Two resource problems

Johnson's Rule Sequences tasks to minimize makespan

$$
\begin{aligned}
& \text { You } \\
& \text { Kim } \\
& \text { Period } \quad|1| 2|3| 4|5| 6|7| 8|9| 10|11| 12|13| 14|15| 16|17| 18|19| 20
\end{aligned}
$$

Sequence

English
Management Finance

Accounting
Marketing

Two resource problems

Johnson's Rule Sequences tasks to minimize makespan

Sequence English Management Finance

Accounting
Marketing

Two resource problems

Johnson's Rule Sequences tasks to minimize makespan

Sequence English Management Finance

Accounting
Marketing

Two resource problems

Johnson's Rule Sequences tasks to minimize makespan

Sequence English Management Finance

Accounting
Marketing

Two resource problems

Johnson's Rule Sequences tasks to minimize makespan

Sequence English Management Finance

Accounting
Marketing

Two resource problems

Johnson's Rule Sequences tasks to minimize makespan

Sequence English Management Finance

Accounting
Marketing

Two resource problems

Johnson's Rule Sequences tasks to minimize makespan

Sequence English Management Finance

Accounting
Marketing

Two resource problems

 Johnson's Rule Sequences tasks to minimize makespan

Sequence English Management Finance

Accounting
Marketing

Two resource problems

Johnson's Rule Sequences tasks to minimize makespan

Sequence English Management Finance

Accounting
Marketing

Employee Scheduling

\checkmark Labor is very flexible resource
\checkmark Scheduling workforce is complicated repetitive task
\checkmark Heuristics commonly used

We'll cover one simple one today...

Employee Scheduling Heuristic

Let $N=$ no. of workers available
$D_{i}=$ demand for workers on day i

1. Assign the first $N-D_{1}$ workers day 1 off. Assign the next N - D_{2} workers day 2 off. Continue in a similar manner until all days are scheduled.
2. If number of workdays for full time employee < 5, assign remaining workdays so consecutive days off are possible.

- Assign any remaining work to part-time employees.

3. If consecutive days off are desired, consider switching schedules among days with the same demand requirements.

Example

DAY OF WEEK	M	T	W	TH	F	SA	SU
MIN NO. OF							
WORKERS REQUIRED	3	3	4	3	4	5	3

Taylor
Smith
Simpson
Allen
Dickerson
$\mathrm{O}=$ day off

1. Assign the first $\mathbf{N}-\mathrm{D} 1$ workers day 1 off. Assign the next N-D2 workers day 2 off. Continue in a similar manner until alldays are have been scheduled.

$\begin{array}{llllllll}\text { DAY OF WEEK } & \text { M } & \text { T } & \text { W TH } & \text { F } & \text { SA } & \text { SU }\end{array}$

MIN NO. OF
WORKERS REQUIRED $D_{1}=3 \quad D_{2}=3 \quad D_{3}=4 \quad D_{4}=3 \quad D_{5}=4 \quad D_{6}=5 \quad D_{7}=3$
$\mathbf{N}=5\left\{\begin{array}{l}\text { Taylor } \\ \text { Smith } \\ \text { Simpson } \\ \text { Allen } \\ \text { Dickerson }\end{array}\right.$

$$
N-D_{1}=5-3=2
$$

1. Assign the first $\mathbf{N - D 1}$ workers day 1 off. Assign the next N-D2 workers day 2 off. Continue in a similar manner until all days are have beenscheduled.

DAY OF WEEK	M	T	W	TH	F	SA	SU
MIN NO. OF							
WORKERS REQUIRED	3	3	4	3	4	5	3
Taylor	0						
Smith	0						
Simpson							
Allen							
Dickerson							

$$
\mathrm{N}-\mathrm{D}_{2}=5-3=2
$$

2. If number of workdays for full time employee < 5, assign remaining workdays so consecutive days off are possible.

DAY OF WEEK	M	T	w	TH	F	SA	SU	Work days
MIN NO. OF WORKERS REQUIRED	3	3	4	3	4	5	3	
Taylor	0	X	X	0	X	X	X	5
Smith	0	X	X	0	X	X	X	5
Simpson	X	0	X	X	0	X	X	5
Allen	X	0	X	X	X	X	0	5
Dickerson	X	X	0	X	X	X	0	5

3. If consecutive days off are desired, consider switching schedules among days with the same demand requirements.

DAY OF WEEK	M	T	W	TH	F	SA	SU
MIN NO. OF							
WORKERS REQUIRED	3	3	4	3	4	5	3
Taylor	O	X	X	O	X	X	X
Smith	O	X	X	O	X	X	X
Simpson	X	O	X	X	O	X	X
Allen	X	O	X	X	X	X	O
Dickerson	X	X	O	X	X	X	O

Completed schedule satisfies requirements but has no consecutive days off.
3. If consecutive days off are desired, consider switching schedules among days with the same demand requirements.

DAY OF WEEK	M	T	W	TH	F	SA	SU
MIN NO. OF							
WORKERS REQUIRED	3	3	4	3	4	5	3
Taylor	0	X	X	0	X	X	X
Smith	O	X	X	O	X	X	X
Simpson	X	O	X	X	O	X	X
Allen	X	O	X	X	X	X	0
Dickerson	X	X	O	X	X	X	0

3. If consecutive days off are desired, consider switching schedules among days with the same demand requirements.

DAY OF WEEK	M	T	W	TH	F	SA	SU
MIN NO. OF							
WORKERS REQUIRED	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{3}$
Taylor	O	O	X	X	X	X	X
Smith	O	0	X	X	X	X	X
Simpson	X	X	X	0	O	X	X
Allen	X	X	X	O	X	X	O
Dickerson	X	X	O	X	X	X	O

The revised schedule satisfies requirements with consecutive days off for most employees.

Service Management; Queuing (WAITING LINE)

Overview

■ Nature of services
■ Service system design

- Service queues
\checkmark Components
\checkmark Examples (analysis)

Nature of Services

- Everyone is an expert
- Idiosyncratic
\checkmark what works for one may not others
- Quality of work is not quality of service

■ Mix of tangible and intangible attributes

- High contact services are "experienced"
- Need to understand marketing \& personnel
- Cycles of encounters

Service System Design Matrix

Degree of customer/server contact

Designs for On-Site Service

- Production Line Approach \checkmark McDonald's
- Self-Service Approach
\checkmark Salad bar, ATMs, gas stations
- Personal Attention Approach \checkmark Ruth's Steakhouse

Disney World

- Waiting in lines does not add enjoyment
- Waiting in lines does not generate revenue
- Waiting lines are Non-Value Adding!

Implications of Waiting Lines

- 1. Cost and congestion from waiting space
- 2. Loss of immediate business
- 3. Loss of long term goodwill
- 4. Reduction in customer satisfaction

Queuing (Waiting Line) Systems

- The familiar "waiting in line" situation
- Frustrating, annoying
- Managing well is key
\checkmark Objectives - depend on situation \checkmark Balance service with productivity

You've Been There Before!

‘The other line always moves faster.
'If you change lines, the one you left will start to move faster than the one you're in.'

Thank you for holding. Hello...are you there?

Waiting Line Examples

Situation
Arrivals
Customers
Patient
Doctor's office

Bank
Doctor's office

Servers
Service Process

Traffic intersect.

Assembly line Parts

Workers
Tool crib

Clerks
Controlled passage
Teller
Deposit etc.

Doctor

Light

Workers
Assembly

Check out/in tools

Waiting Line Costs

Cost

Total waiting
2らリ」e c゙oji

Optimal
 Level of service

Waiting Line Terminology

■ Queue: Waiting line
■ Arrival: 1 person, machine, part, etc. that arrives and demands service
■ Queue discipline: Rules for determining the order that arrivals receive service
■ Channel: Number of waiting lines

- Phase: Number of steps in service

Input Characteristics

Input Source (Population)

Size

Infinite

Input Characteristics

Input Source Fixed number of (Population) aircraft to service

Infinite

Finite

© 1995 Corel Corp.

Input Characteristics

Input Source (Population)

Size

Arrival Pattern

Infinite
Finite
Random

Input Characteristics

Input Source (Population)

Size

Arrival Pattern

Behavior

Infinite
Finite
Random
NonRandom

Patient

Balking

Input

Service system

Line was too long!

Input Characteristics

Input Source
(Population)

Size

Arrival
Pattern

Random

Non-
Random

Reneging

Input source

Waiting Line Characteristics

Waiting Line Characteristics

Waiting Line Characteristics

Waiting Line

Length

Service Facility Characteristics

Service
 Facility

Configuration

Single
 Channel

Single
 Phase

Single-Channel, Single-Phase System

Service system

Arrivals
Queue

Service facility

Ships at
Ship unloading system sea

Waiting ship line
Empty

Dock

Single-Channel, Multi-Phase System

Service system

Arrivals

Cars
McDonald's drive-through
Served

in area
.

Multi-Channel, Single Phase System

Service system

Arrivals

Example: Bank customers wait in single line for one of several tellers.

Multi-Channel, Multi-Phase System

Service system

Arrivals

Example: At a laundromat, customers use one of several washers, then one of several dryers.

Waiting Line Priority Rules

\square 1. First come, first served

- 2. Best customers first (reward loyalty)
- 3. Highest profit customers first
- 4. Quickest service requirements first
- 5. Largest service requirements first
- 6. Earliest reservation first

■ 7. Emergencies first

Queue Psychology

■ Unoccupied time vs. occupied time
■ Pre-process wait vs. in-process wait

- Uncertain waits vs. certain waits

■ Unexplained waits vs. explained waits

- Unfair waits vs. equitable waits
- Willingness to wait related to value
- Solo waits vs. group waits

Changing System Performance

- 1. Customer Arrival Rates
\checkmark Ex: Try to smooth demand through non-peak discounts or price promotions
- 2. Number and type of service facilities
\checkmark Ex. Increase or decrease number of servers, or dedicate specific servers for certain tasks (e.g., express line for under 10 items)
- 3. Change Number of Phases

Ex. Can use multi-phase system instead of single phase. This spreads the workload among more servers and may result in better flow (e.g., fast food restaurants having an order phase, pay phase, and pick-up phase during busy hours)

Changing System Performance

- 4. Server efficiency
\checkmark Ex: Add resources to each phase (e.g., bagger helping a checker at the grocery store)
\checkmark Ex: Use technology (e.g. price scanners) to improve efficiency
- 5. Change priority rules

Ex: implement a reservation protocol
\square Change the number of lines
\checkmark Ex: Reduce multiple lines to single queue to avoid jockeying
\checkmark Ex: Dedicate specific servers to specific transactions

Summary

■ What is scheduling

- Basic sequencing options
- Johnson's rule
- Nature of Services

■ Waiting Line Terminology

- Changing Service Performance

[^0]: Processing time: 9
 3
 8
 2
 6
 Time until due: 23
 15
 18
 6
 8

