Design of Products/Services

Module 3 July 14, 2014

Origin of ideas for new products/services

Components of new products/services design

Role of reliability

Differences in design

Course Structure

Introduction

Operations Strategy & Competitiveness

Module 3

Introduction

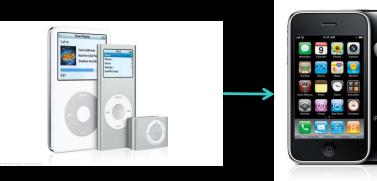
Operations Strategy & Competitiveness

The first rule of business:

"You have to have products that sell"

Product Design is a *Business Issue*

Why Firms Develop New Products


- 1. Competitive Advantage
- 2. Market Share Gain
- 3. Higher Profitability
- 4. Enhancement of Brand
- 5. Faster Competitive Response
- 6. Improved Operating Cost & Resource Utilization

Competitive Advantage

 Firms innovate and develop new products for unique opportunities for competitive advantages.

 Example: The <u>iPod</u> was instrumental in the survival and emergence of a *stronger* and more *competitive* Apple Inc., resulting in market share gain and higher profitability.

Market Share Gain

- New products introduced in the marketplace provide additional "first mover advantages" to the company.
- By developing new products, a company can quickly capture a big share of the market before competitive products are introduced.
- Example: Toyota's successful introduction of the Prius hybrid car prior to its competitors' development of such a car has allowed the company to establish a dominant position in the emerging market segment of fuel-efficient and environmentally friendly automobiles.
- Who else is in this 'green' automotive marketplace?

Higher Profitability

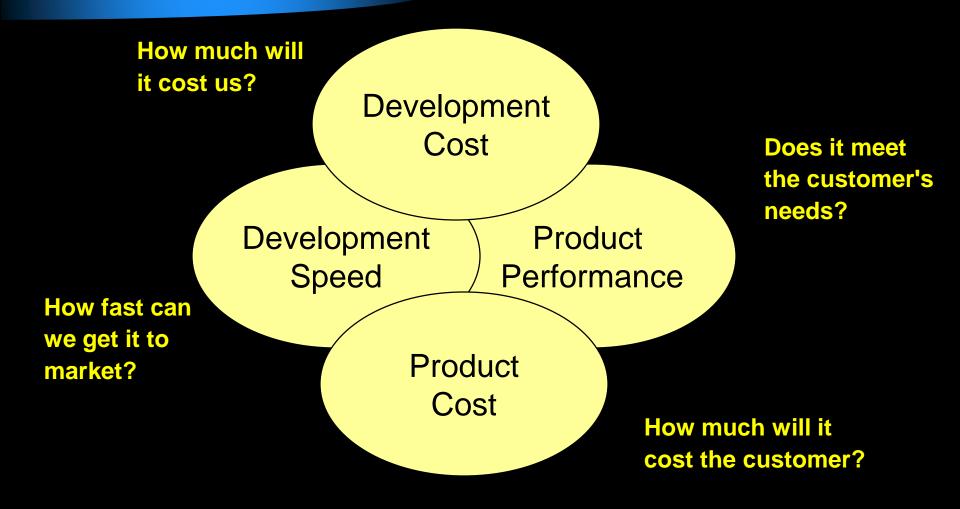
- During the early stages, a new product faces less competition than a product in a mature market; therefore, its profitability tends to be higher.
- As the market becomes saturated with several competitive products, prices start falling, and profit margins decrease.

Enhancement of Corporate Image and Brand Name

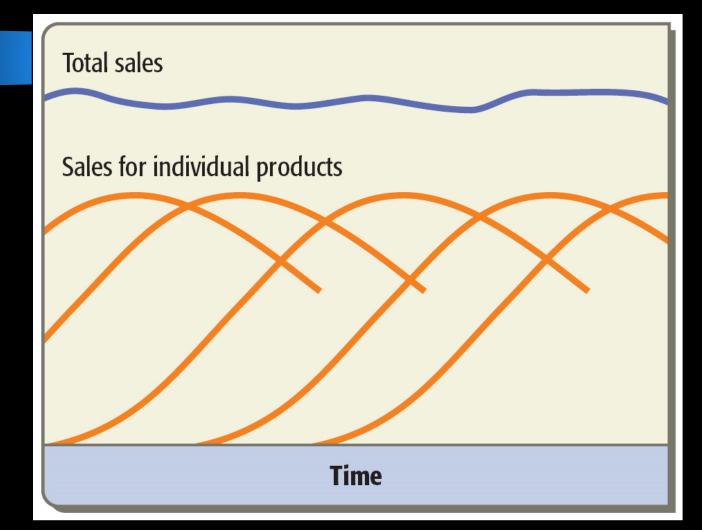
- The developments of innovative and creative new products is a very powerful source of goodwill and creates a positive corporate image.
- Brand equity measures used in marketing show that firms with more successful new product development efforts command higher respect from customers and profitability.
 - brand equity: the monetary or relative value of a brand perceived in the marketplace by its customers.

Faster Competitive Response

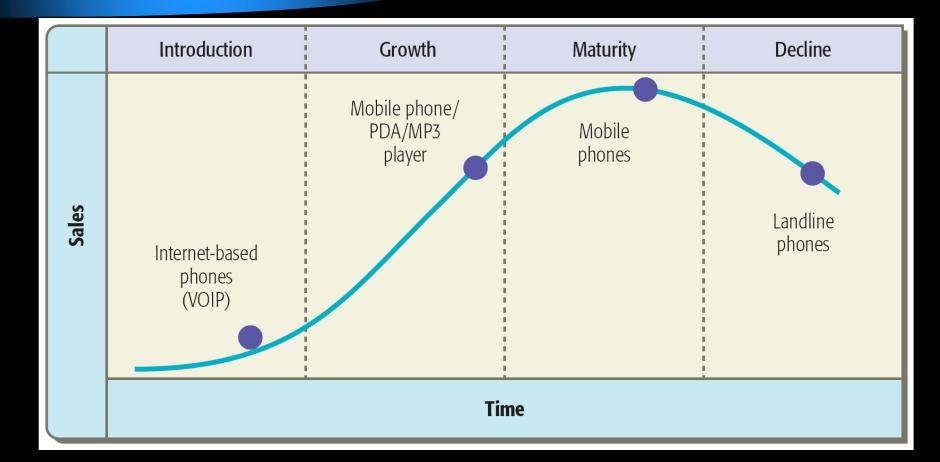
- Having a systematic process for new product development in place can introduce new products quickly after a competitor's product is launched.
- Sony's Playstation, Microsoft's X-Box, and Nintendo's Wii compete fiercely in the video game industry. Each company tries to quickly introduce new products to compete with others.


Operating Cost and Capacity Utilization

- The product development effort is often closely linked with process development.
- New products provide the opportunity for enhanced sales as the demand for older products decreases over time.



Source: © Image Source/Corbis


Product Development Tradeoffs

Multiple Product Life Cycles

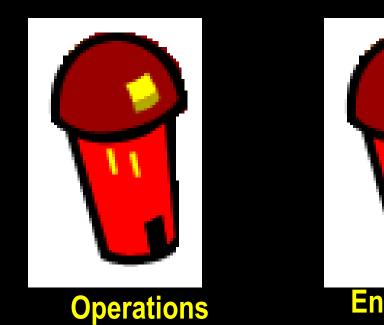
Single Item (Industry) Product Life Cycle

Radical and Disruptive Innovation

- Radical Innovation: a new product, generally containing new technologies, that significantly changes behaviors and consumption patterns in the marketplace
- **Disruptive Innovation**: a new product that is initially introduced at a lower quality level along some established criteria but a much superior quality level along a new dimension

Examples of Disruptive New Products

TABLE 3.1 Some Examples of Disruptive New Products				
Industry	Existing Product	Disruptive Product		
Transportation	Horse-driven carriages	Automobiles based on gasoline-powered engines		
Transportation	Automobiles based on gasoline- powered engines	Automobiles based on hybrid (gasoline + electric battery) engines		
Computers	Mainframe computers	Laptop computers		
Computers	Laptop computers	Palm-top computers		
Retailing	Shopping center	Internet retailer		
Hotels	Large convention and standard hotels	Boutique hotels		
Restaurants	Traditional quick-service (or fast-food) establishments	Gourmet, organic, and health food–based restaurants		
Communication	Landline phones	Mobile phones		
Communication	Mobile phones	Internet-based phones (VoIP)		
Photography	Camera using film	Digital cameras		
Music	Audio cassettes	Compact disk players		
Music	Compact disk players	MP3 players		


Product/Service Design

Major Business Functions Involved

Historically...

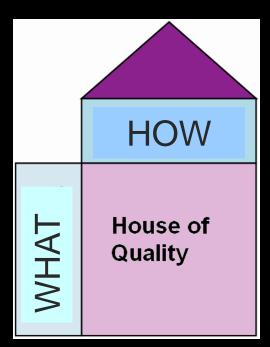
Functional "Silos"

Historically...

As the customer wanted it.

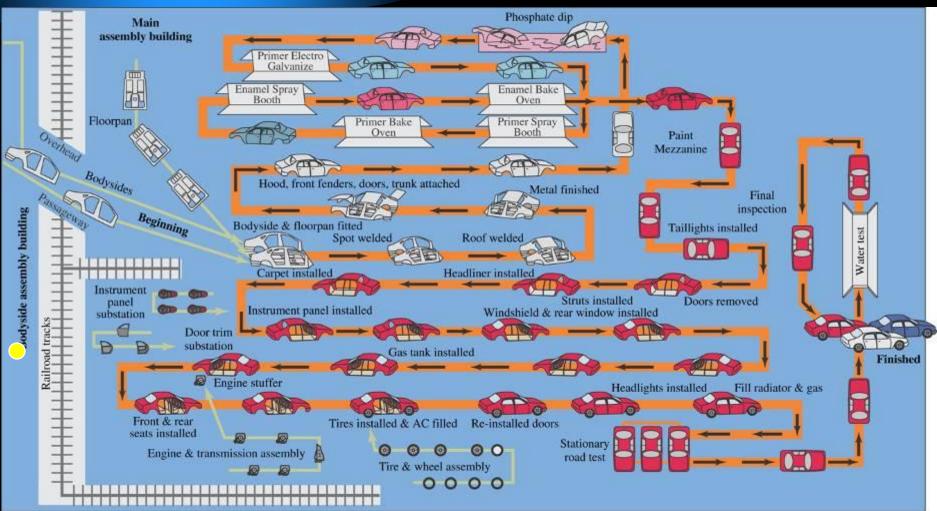
As Operations made it.

As Marketing interpreted it.


As Engineering designed it.

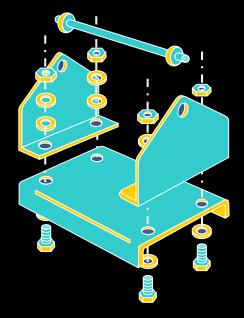
Quality Function Deployment

House of quality


- Helps the cross functional team to focus on building a product that satisfies customers
- Graphical technique to relate customer needs (WHATs)
 - to product design characteristics (HOWs)

Selection of inputs, operations, workflows, and methods for producing goods and services

Process Example 1: How to Make a Car



Process Example 2: How to Make a Burger

Elements of Product Design: Design Simplification

(a) The original design

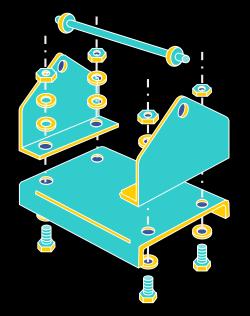

Assembly using common fasteners

Figure 3.3

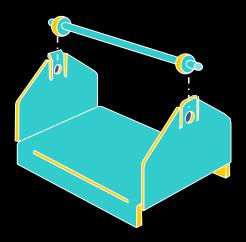
Design Simplification

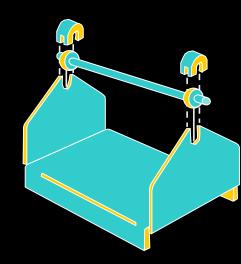
(a) The original design

(b) Revised design

Assembly using common fasteners One-piece base & elimination of fasteners

Design Simplification


(a) The original design


(b) Revised design

Assembly using common fasteners One-piece base & elimination of fasteners

Design for push-and-snap assembly

(c) Final design

Standardizing parts among different products at Ford

Product a	# before	# after	Savings/veh
Air filters	18	5	\$0.45
Carpet	9	3	\$1.25
Trunk car	pet 7	1	\$1.16

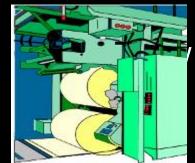
Annual savings = 3M + 9M + 5M= 17M

- Project
- Batch Production (job shop)
- Mass Production (assembly line)
- Continuous Production

Process Types

Project

HI variety of products, low volume, flow not unique


Batch Production (job shop)

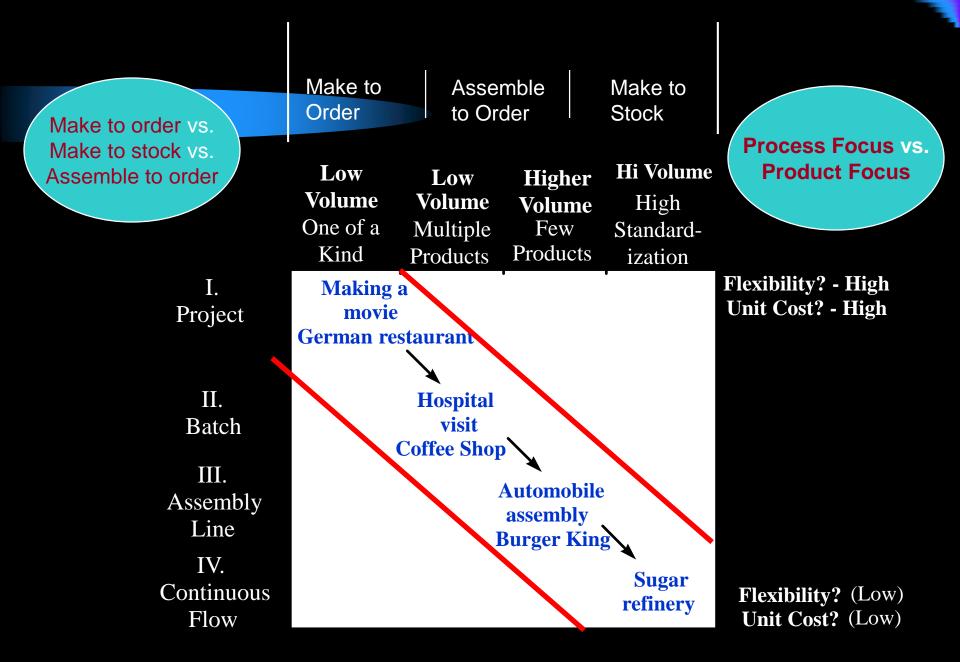
Wide variety of products, med volume, jumbled flow

• Mass Production (assembly line)

Low variety of products, High volume, dominant flow

Continuous Production Commodity product, HIGHEST volume,

Process Type - Characteristics


Project /Batch

Assembly /Continuous

Volume/Variety:	Low/high
Capacity Measured:	Inputs
Competition:	Non-cost
Process Stages:	Separate
Equipment:	General
Work In Process:	High
Size:	Small
Flexibility:	Very
Labor Content:	High

High/low Outputs Cost Linked Specialized Low Large Not at all Low

The Product-Process Matrix

Where Do New Product Ideas Come From?

Traditional sources:

- customer surveys
- analyzing warranty claims, customer complaints
- surveys of suppliers, distributors, and salespersons

Modern Sources – New Products

Benchmarking

 comparing product/service against <u>best-in-class</u>

Reverse engineering

 <u>dismantling</u> competitor's product to improve your own product
 Early Supplier Involvement (ESI) Analysis Tools for New Product Development

Customer Choice Analysis
Product Reliability Analysis
Product-Complexity Index
Quality Function Deployment

Customer Choice Analysis

 Customer choice analysis: an experimental approach to identify the relative importance of various product features for customer choices

- Willingness to pay: define
- **Desirability:** define

Product Reliability Analysis

An approach for assessing the overall integrity of a product based on the configuration of its components

Product Reliability Analysis

- Redundancy: the use of backup components and systems to enhance the reliability of a product
- Robust design: a design approach that ensures that small variations in the production process do not adversely affect the quality of the product

State Reliability in Terms of Probability

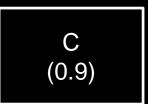
- Ex: A Product that is 90% Reliable Has a Failure Probability of 1 – 0.9 = 0.1 (10%)
- What If a Product Has Multiple Components That Can Fail?
 - Component A: 90% Reliability
 - Component B: 80% Reliability
 - Under What Conditions Does the Product Fail?
 - If One or Both Components Fail \rightarrow Product Fails

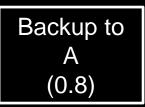
- In Other Words → Both Components Must NOT Fail
- Probability of Both Being Reliable is:
 (0.9)(0.8) = 0.72 (72% Chance of Being Reliable)
 - ◆ 1 0.72 = 0.28 (28% Chance of Failure)
- Calculate System Reliability By Multiplying Reliabilities of Components

 What Is the Reliability of the Product Below? (Component Reliabilities Shown)

Reliability = (0.9)(0.95)(0.9) = 0.77 (77%)

How to Improve Reliability?

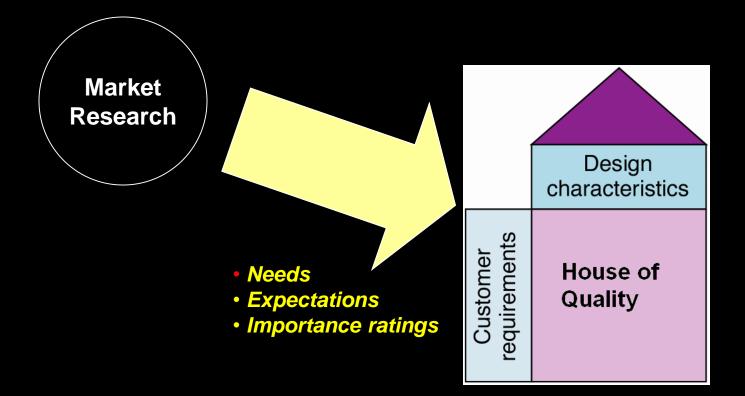

Add Redundancy!



Ex: Add a Backup Component to Component A

Under What Conditions Does This Product Fail?

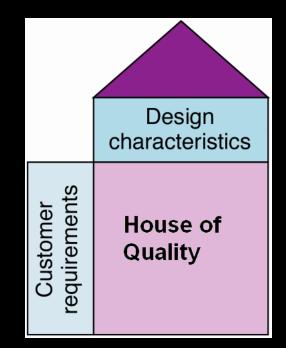
Under What Conditions Does This Product Fail?? A & It's Backup Fail OR B Fails OR C Fails


What Is Probability that BOTH A & Backup Fail? (0.1)(0.2) = (0.02) (2%) (98% Reliable) Reliability of Product? (0.98)(0.95)(0.9) = 0.84

Quality Function Deployment

A structured approach for systematically integrating customer requirements and quality standards into every aspect of product development from planning to the production floor

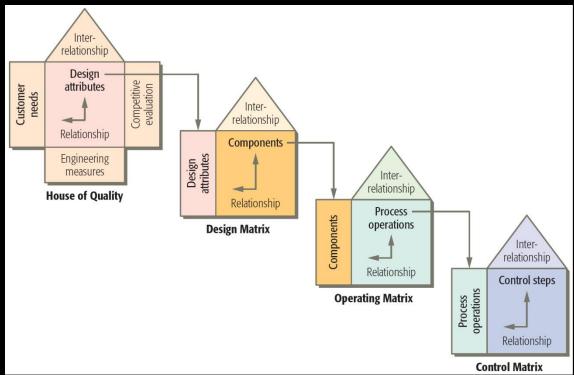
Quality Function Deployment


- Integrates voice of the customer into product design
- Involves cross-functional teams

Quality Function Deployment

House of quality

 Helps the cross functional teams to focus on building a product that satisfies customers



The Quality Function Deployment (QFD) Process

TABLE 3.3		The Quality Function Deployment (QFD) Process					
Step 1	Ide	entification of customer needs and preferences					
Step 2		lationship between customer needs and engineering design aracteristics					
Step 3		terrelationships among the engineering design aracteristics					
Step 4		ompetitive evaluation of competing products and targets for sign attributes					
Step 5		nking engineering design characteristics and component aracteristics					
Step 6	Liı	nking component characteristics and the process operations					
Step 7	Liı	nking the process operations and control parameters					
Step 8	Im	plementation and continuous improvement					

The QFD Process

 The first QFD matrix, called the House of Quality links the voice of the customer to the product design attributes (voice of the engineer).

House of Quality Layout

		Co-relationships
		Technical requirements
Customer Requirements	Im portance	Relationship Matrix
		Column weights
		Goals and targets

The House of Quality

											Relationships		
				stack *	ethod		Design for manufacturing		★ Strong ■ Medium ● Small				
Customer Requirements		Wire size	Number of turns	Lamination stack	Varnished method	Insulation type	Design for m	1	Cor Ev 2	mpet aluat 3	itive tion 4	5	
Low cost (with required regulation)	8	*	*	*			*		Х	А	В		
Reliability	8	*	*	*		*				В	А	Х	
Temperature rise	7				*	*	•			А	В	Х	
Delivery	7				*		*		BA		Х		
Meets UL/CSA/VDE/CE or other	6				*	*					AB	Х	
Noise level	6				*	*			В	А		Х	
Physical size	5	*	*	*		•					AB	Х	
High efficiency	5	*	*	*						Х	А	В	
Aesthetics	4				*	•					Х	AB	

X = HighTrans Inc. A B = Competitors of HighTrans Inc.

- Why is it important to develop new products?
- Radical versus disruptive innovation?
- What are the various process types and where is each best?
- What are sources of new products?
- Who do you quantify reliability?
- Quality deployment function?